RUTHENIUM COMPLEXES

PRODUCT LINE

RUTHENIUM COMPLEXES

Cyanagen produces RUTHENIUM COMPLEXES for fluorescence polarization assays and fluorescence lifetime imaging applications.
The labels obtained from these complexes are remarkably stable both chemically and photochemically.
They can be used in fluorescence polarization assays, time-resolved immunoassays, ECL immunoassays and to label amines on biomolecules under mild conditions.

Features

  • Chemical and fotochemical stability
  • High fluorescence duration
  • Large Stokes shifts

Applications

Fluorescent Gel Staining Imaging Protein Labeling

Products collected in this line

PRODUCT NAME FEATURES CAT: NR
[Ru(BPS)2BPY]Na2•9H2O Ruthenium Complexes Its electrochemiluminescence signal is 15 times higher compared to that shown by the tris(2,2’-bipyridine) complex
432 nm (H2O)
618 nm (H2O)
F3R498X
[Ru(BPS)3]Na4•6H2O Ruthenium Complexes Its electrochemiluminescence signal is 5 times higher compared to that shown by the tris(2,2’-bipyridine) complex
464 nm (H2O)
615 nm (H2O)
F3R699X
Ru(BP)3 (PF6)2 Ruthenium Complexes Widely used for the preparation of luminescent Oxygen sensors
The fluorescence is strongly reduced by molecular Oxygen due to quenching
Probes are based on the measurement of intensity or decay time
455 nm (H2O)
615 nm (H2O)
F0R400X
Ru(BPS)2Cl2•9H2O Ruthenium Complexes 452 nm (H2O)
628 nm (H2O)
F0R400X
RUB-C0-VY Ruthenium Complexes Useful label for fluorescence and electrochemiluminescence detection
Undergoes reductive electropolymerization to form high quality electroactive polymer films
452 nm (H2O)
628 nm (H2O)
F3R020X
RUB-C3-CHO Ruthenium Complexes Useful label for fluorescence and electrochemiluminescence detection
Reacts with primary and secondary amine-containing molecules to form Schiff bases
Reacts towards hydrazine and especially hydrazide derivatives to create a hydrazone linkage, relatively more stable than the easily reversible Schiff base bond
In both cases reductive amination with sodium cyanoborohydride reduces the double bond to form a stable covalent linkage
452 nm (H2O)
628 nm (H2O)
F3R020X
RUB-C3-COOH Ruthenium Complexes Useful label for fluorescence and electrochemiluminescence detection
Reacts towards amines via carbodiimide activation
450 nm (H2O)
628 nm (H2O)
F3R001C
RUB-C3LC-COOH Ruthenium Complexes Useful label for fluorescence and electrochemiluminescence detection
Reacts towards amines via carbodiimide activation
452 nm (H2O)
628 nm (H2O)
F3R051C
RUB-C4-NH2 Ruthenium Complexes Useful label for fluorescence and electrochemiluminescence detection
Reacts towards electrophiles
With an activated carboxylic acid forms stable amide bond under mild conditions
452 nm (H2O)
628 nm (H2O)
F3R010A
RuBPS(BPY)2•4H2O Ruthenium Complexes Its electrochemiluminescence signal is 25 times higher compared to that shown by the tris(2,2’-bipyridine) complex
452 nm (H2O)
620 nm (H2O)
F3R297X

Products references of RUTHENIUM COMPLEXES Line

RUB-C3LC-COOH Ruthenium Complexes
  • Bard, A. J.(Ed.) Electrogenerated Chemiluminescence, Marcel Dekker, New York, 2004.
  • Richter, M. M. Chem. Rev., 2004, 104, 3003.
  • Miao, W. Chem. Rev. 2008, 108, 2506.
  • Xu, X. N. and Zu, Y. In New Frontiers in Ultrasensitive Bioanalysis, Xu, X. N. (Ed.), Wiley, New York, 2007, 235-268.
  • Zanarini, Simone, et al. “Electrogenerated Chemiluminescence for bio-assay: from single Molecule to Nano-structured tracers (Global journal of physical chemistry).”Global Journal of Physical Chemistry” 2010, 1(1), 79-90.
  • Della Ciana, L., Zanarini, S, Perciaccante, R., Marzocchi, E. and Valenti, G. “Ru(bpy)32+ Neutral and Dianionic Ru(II) Bathophenanthroline disulfonate Complexes: a Route to Enhance Chemiluminescence Performance in Aqueous Media”, J. Phys. Chem., C (2010) 114, 3653-3658.
  • Zanarini, S, Rampazzo, E., Della Ciana, L., Marcaccio, M., Marzocchi, E., Montalti, M., Paolucci, F. and Prodi, L. Ru(bpy)3 Covalently Doped Silica Nanoparticles as Multicenter Tunable Structures for Electrochemiluminescence Amplification, J. Am. Chem. Soc. (2009), 131 (6), 2260-2267.
  • Vinante, M., Pasquardini, L., Sanginario, A., Giorcelli, M., Bianco, s., Gerbaldo, C., Nair,J.R., Lunellki, L., Vanzetti, L., Paolucci, F., Marcaccio, M.,, Prodi, L., Tagliaferro, A., Pederzolli, C., Demarchi, D. and Civera, P. Electrochimica Acta (2010) 56 (25), 9269-9276.
  • Sanginario, A., Demarchi, D, Giorcelli, M. and Castellino. Electrochemiluminescent sensor for clinical analysis based on Carbon Nanotubes electrodes, NSTI- Nanotech 2010, 3, 110-113.
  • Bianco, S.; Giorcelli, M.; Musso, S.; Tagliaferro, A.; Demarchi, D.; Sanginario, A.; , “Application of electrochemiluminescence and carbon nanotubes to biomolecular analysis,” Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on , vol., no., pp.630-633, 26-30 July 2009
  • Dolci, L. S., Zanarini, S., Della Ciana, L., Paolucci, F., Roda, A. ,  Anal. Chem. (2009) , 81, 6234-6241.
  • Deiss, F.,   LaFratta, C.N., Symer, M., Timothy M. Blicharz, T.M., Neso Sojic, N, and  Walt, D., J. Am. Chem. Soc., 2009, 131, 6088-6089.
  • Valenti, G., Scarabino, S., Goudeau, B., Lesch, A., Jovic, M., Villani, E., Sentic, M., Rapino, S., Arbault, S., Paolucci, F., and Sojic, N. (2017) Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis. J Am Chem Soc 139, 16830-16837 doi: 10.1021/jacs.7b09260
  • Voci, S., Goudeau, B., Valenti, G., Lesch, A., Jovic, M., Rapino, S., Paolucci, F., Arbault, S., and Sojic, N. (2018) Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. J Am Chem Soc 140, 14753-14760 doi: 10.1021/jacs.8b08080

Our bestsellers

^